We help scientists to compare scientific instruments
Compare Instruments

Select any of the instruments below. To compare, check the "Compare" check box of two or more instruments and click "Compare".

For UHV Scanning Probe Microscopes select:

Gerneral Information

Atomic Force Microscopy (AFM) or Scanning Force Microscopy (SFM) is a very high-resolution type of Scanning Probe Microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the optical diffraction limit. The precursor to the AFM, the Scanning Tunneling Microscope (STM), was developed by Gerd Binnig and Heinrich Rohrer in the early 1980s at IBM Research - Zurich, a development that earned them the Nobel Prize for Physics in 1986.

As the name suggests, the heart of an AFM is a probe that is scanned over the sample surface to build up some form of image. The type of image you get depends on the interaction that is measured by the probe. Images can be produced that reflect many different properties of the sample. The sample height information (topography), usually forms one aspect of the image, but images can also be collected that show other properties, including mechanical, electrostatic, optical, or magnetic information about the sample surface.


Different probes and measurement systems are used for some of the different properties that can be measured, but one requirement is that the interaction between the probe and the sample is localised in some way. The measured signal must be dominated by some small region of the sample close to the tip, so that an image of the sample can be formed as the tip is scanned over the surface. This implies that the interaction must have a strong distance dependence, so that only the nearest parts of the sample contribute to the interaction felt by the tip. The range of the interaction will be one factor in the final resolution of the instrument. When the interaction has a very strong distance dependence, such as the electron tunelling current used in STM, the resolution can be good enough to "feel" individual atoms.

Since the measured signal should be dominated by the small region of probe and sample that are closest together, the actual probe does not need to be an isolated point. The probe can be part of some larger structure that is more convenient to mount and scan. The size of the probe can be relatively large, perhaps hundreds of microns or more, but if the interaction has a short enough range then the signal will be dominated by the very tip region of the probe, so that resolutions can still be achieved in the range from atomic distances to microns.

The idea of a probe measuring a local interaction and building up an image is relatively straightforward, but the actual implementation of a system with a resolution in this range is technically challenging. Many factors came together in the development of scanning probe microscopy, including the development of piezoelectric materials that made it possible to reproducibly position and scan components with a sub-nanometre precision.

Here is a market overview of instruments made by specialist manufacturers and companies around the globe.

Application Notes

Piezoresponse Force Microscopy

This application note presents a primer on the direct and reverse piezoelectric effects and their uses, and the instrumentation and applications of piezoresponse force microscopy... read more


Choosing AFM Probes for Biological Applications

The appropriate choice of AFM probe is crucial for optimal results when imaging biological samples. This application note provides an overview of probes available for biological applications... read more


AFM Applications in Polymer

Polymers are the material of choice in many applications. They can be tailored to have unique properties and are often less expensive, more durable, and more sustainable than other materials. Creating and implementing new polymers requires knowledge of how structure, processing, properties, and performance are related... read more


Characterization of Steel by MFM and KPFM

Examination of steel by the non-contact mode AFM techniques Magnetic Force Microscopy (MFM) and Kelvin Probe Force Microscopy (KPFM) also known as Surface Potential Microscopy... read more


Comprehensive Analyses of Graphene

Graphene shows immense promise in many applications: transistors, sensors, and optoelectronics, to name just a few of them. Flexible and adaptive analyzing methods can support the effective investigation of graphene and accelerate the progress in graphene research and product development... read more


Surfactant Micelles in Aqueous Solution: Critical Resolution in AFM

It’s a widely spread idea that performing AFM in liquids is a rather complicated research approach. Actually, many tasks related to the investigation of molecular structures and complexesin a liquid environment... read more 


Manipulation of Gold Nanoparticles in Liquids Using MAC Mode Atomic Force Microscopy

Precise control of the structure of matter at the nanometer scale will have revolutionary implications for science and technology. Nanoelectromechanical systems (NEMS) will be extremely small and fast, and have applications that range from cell repair to ultrastrong materials... read more


AFM in Cosmetics Research and Product Development

Sensory perception of hair is a primary concern among cosmetic manufacturers. The way hair looks and feels to the touch is related to the structure and properties of hair at the nanometer scale. The Atomic Force Microscope (AFM) offers direct, highly localized, tactile interface with the hair’s outer surface in environments to which hair is usually exposed... read more


Investigation of Solar Cells

While traditional tools are helpful to investigate and improve solar cells, AFM/SPM offers metrology, topography & roughness analysis at much higher resolution than with optical techniques... read more


n-Surf                       FlexAFM                                        TrueMap                                  
MountainsMap ImageJ Image SXM
 AtomicJ PUNIAS FemtoScan
 WSxM  SPIP  Gwyddion







AFM Atomic Force Microscope

NT-MDT Titanium

Revolution Cartridge: The new Revolution Cartridge with multi-probe technology for automated replacement of cantilevers makes a breakthrough in AFM...


Oxford Instruments Asylum Cypher ES Environmental AFM

Oxford introduces the Cypher ES, wich adds full environmental control to the Cypher platform - the highest resolution fast scanning AFM.


WITec alpha300 A

Nanoscale Surface Characterization: The WITec Atomic Force Microscope alpha300 A is a reliable, high-quality nano-imaging system integrated with a...


Nanosurf NaioAFM

Affordable all-in-one AFM for nano education and small samples. Integrated controller, airflow shielding, vibration isolation, and XY-table (12...


Hitachi AFM5300E Environmental Control Atomic Force Microscope

An environmentally-controlled atomic force microscope for observations under various conditions, the AFM5300E allows surface measurements in Air,...


JPK NanoWizard 3 UltraSpeed AFM

Fast-Scanning and Super-Resolution AFM on inverted microscope enabling tracking of changes in samples in real time.


DME DS 95 AFM Objective for Optical Microscopes

The DS 95 AFM Objective in your optical microscope is the ticked for the world behind the defraction limit. The resolution is pushed far below...


Park XE7

The economical choice for innovative research: Park XE7 has all the state-of-the-art technology you've come to expect from Park Systems, at a price...


Bruker Dimension Edge

Best Value Closed-Loop Dimension AFM. Proprietary sensor design achieves closed-loop accuracy with open-loop noise levels. Significantly reduced...



Automated AFM-Raman-SNOM system for a wide range of applications: The World’s first fully automated AFM-Raman-SNOM instrument. Integration of AFM...


Keysight 7500 ILM

High-resolution atomic force microscope on an inverted optical microscope allows simultaneous AFM and fluorescence imaging Top-down scanner design...


Nanonics Confocal AFM Raman TERS and NSOM System

Seamless Integration of AFM and Raman With Proven Tip Enhanced Raman Spectroscopy (TERS): One head fits all AFM Systems that can be placed on any...


Nanomagnetics Ambient AFM/MFM

Its affordable price and good performance makes the ambientAFM preferred atomic force microscope for both R&D studies and industry. It allows...


Bruker Dimension FastScan

Delivers, for the first time, extreme imaging speed without loss of resolution, loss of force control, added complexity, or additional operating...


AFMWorkshop SA-AFM

The SA-AFM is a flexible AFM for scanning all sizes and shapes of samples. A complete system for life sciences samples, large samples, routine...



Automated AFM: Intended for wide application automated monoblock AFM/STM measurement system with a built-in video microscope


HORIBA Raman-AFM and nano-Raman

HORIBA's leading Raman technology is now integrated with outstanding scanning probe microscopy (SPM). The platform integrates Atomic Force Microscopy...


Nanosurf NanoFlex Bio

Versatile research AFM for life science. True flexibility with a variety of exchangeable cantilever holders Flat and linear scanning thanks to the...


Hitachi AFM5100N Compact General-Purpose Atomic Force Microscope

The Hitachi AFM5100N Atomic Force Microscope is a compact, general-purpose AFM equipped with a built-in high-resolution sensor lever for manual...


Bruker MultiMode 8

The legendary performance and reliability of the MultiMode platform is the result of both its superior mechanical design and the industry’s lowest...


DME Navigator 220

The DME DS 95 Navigator 220TM enables to investigate one and the same area again even after removing the sample from the AFM. Based on reference...


Bruker Icon AFM-Raman

The Dimension Icon AFM-Raman system, consisting of the Icon AFM and a research-grade confocal Raman microscope (Horiba, LabRam, etc.), is on a...


Park XE15

Increase your productivity with our powerfully versatile atomic force microscope: The Park XE15 includes many unique capabilities that make it ideal...



Interdisciplinary research at the nanometer scale: AFM + Confocal Raman + SNOM + TERS: Integration of SPM and confocal microscopy/Raman scattering...


Page 1 of 3

Cherry Picker

Compare Instruments


ABOUT Science Duel Life

science.duel.life & mynexttool Is a Free-Access Scientific Instrument Database.

Accurate and truthful parameter filters for all instruments and manufacturers provide a positive experience to our users.


New York, NY

Berlin, Germany


Come back tomorrow for more.