We help scientists to compare scientific instruments
Compare Instruments

Select any of the instruments below. To compare, check the "Compare" check box of two or more instruments and click "Compare".

For UHV Scanning Probe Microscopes select:

Gerneral Information

Atomic Force Microscopy (AFM) or Scanning Force Microscopy (SFM) is a very high-resolution type of Scanning Probe Microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the optical diffraction limit. The precursor to the AFM, the Scanning Tunneling Microscope (STM), was developed by Gerd Binnig and Heinrich Rohrer in the early 1980s at IBM Research - Zurich, a development that earned them the Nobel Prize for Physics in 1986.

As the name suggests, the heart of an AFM is a probe that is scanned over the sample surface to build up some form of image. The type of image you get depends on the interaction that is measured by the probe. Images can be produced that reflect many different properties of the sample. The sample height information (topography), usually forms one aspect of the image, but images can also be collected that show other properties, including mechanical, electrostatic, optical, or magnetic information about the sample surface.


Different probes and measurement systems are used for some of the different properties that can be measured, but one requirement is that the interaction between the probe and the sample is localised in some way. The measured signal must be dominated by some small region of the sample close to the tip, so that an image of the sample can be formed as the tip is scanned over the surface. This implies that the interaction must have a strong distance dependence, so that only the nearest parts of the sample contribute to the interaction felt by the tip. The range of the interaction will be one factor in the final resolution of the instrument. When the interaction has a very strong distance dependence, such as the electron tunelling current used in STM, the resolution can be good enough to "feel" individual atoms.

Since the measured signal should be dominated by the small region of probe and sample that are closest together, the actual probe does not need to be an isolated point. The probe can be part of some larger structure that is more convenient to mount and scan. The size of the probe can be relatively large, perhaps hundreds of microns or more, but if the interaction has a short enough range then the signal will be dominated by the very tip region of the probe, so that resolutions can still be achieved in the range from atomic distances to microns.

The idea of a probe measuring a local interaction and building up an image is relatively straightforward, but the actual implementation of a system with a resolution in this range is technically challenging. Many factors came together in the development of scanning probe microscopy, including the development of piezoelectric materials that made it possible to reproducibly position and scan components with a sub-nanometre precision.

Here is a market overview of instruments made by specialist manufacturers and companies around the globe.

Application Notes

Piezoresponse Force Microscopy

This application note presents a primer on the direct and reverse piezoelectric effects and their uses, and the instrumentation and applications of piezoresponse force microscopy... read more


Choosing AFM Probes for Biological Applications

The appropriate choice of AFM probe is crucial for optimal results when imaging biological samples. This application note provides an overview of probes available for biological applications... read more


AFM Applications in Polymer

Polymers are the material of choice in many applications. They can be tailored to have unique properties and are often less expensive, more durable, and more sustainable than other materials. Creating and implementing new polymers requires knowledge of how structure, processing, properties, and performance are related... read more


Characterization of Steel by MFM and KPFM

Examination of steel by the non-contact mode AFM techniques Magnetic Force Microscopy (MFM) and Kelvin Probe Force Microscopy (KPFM) also known as Surface Potential Microscopy... read more


Comprehensive Analyses of Graphene

Graphene shows immense promise in many applications: transistors, sensors, and optoelectronics, to name just a few of them. Flexible and adaptive analyzing methods can support the effective investigation of graphene and accelerate the progress in graphene research and product development... read more


Surfactant Micelles in Aqueous Solution: Critical Resolution in AFM

It’s a widely spread idea that performing AFM in liquids is a rather complicated research approach. Actually, many tasks related to the investigation of molecular structures and complexesin a liquid environment... read more 


Manipulation of Gold Nanoparticles in Liquids Using MAC Mode Atomic Force Microscopy

Precise control of the structure of matter at the nanometer scale will have revolutionary implications for science and technology. Nanoelectromechanical systems (NEMS) will be extremely small and fast, and have applications that range from cell repair to ultrastrong materials... read more


AFM in Cosmetics Research and Product Development

Sensory perception of hair is a primary concern among cosmetic manufacturers. The way hair looks and feels to the touch is related to the structure and properties of hair at the nanometer scale. The Atomic Force Microscope (AFM) offers direct, highly localized, tactile interface with the hair’s outer surface in environments to which hair is usually exposed... read more


Investigation of Solar Cells

While traditional tools are helpful to investigate and improve solar cells, AFM/SPM offers metrology, topography & roughness analysis at much higher resolution than with optical techniques... read more


n-Surf                       FlexAFM                                        TrueMap                                  
MountainsMap ImageJ Image SXM
 AtomicJ PUNIAS FemtoScan
 WSxM  SPIP  Gwyddion







AFM Atomic Force Microscope

JPK NanoWizard 4 BioAFM

The NanoWizard 4 BioScience AFM combines atomic resolution and fast scanning with line rates up to 70 Hz in a system with a large scan range of 100...


JPK NanoWizard BioAFM

For applications in Soft Matter and Life Science research reaching from biophysics and cell biology to surface science and biomedicine.


Nanotec Cervantes FullMode AFM

Cervantes FullMode AFM System is the best tool for characterizing and performing experiments on samples at the nanoscale. It is a modular, open and...


Oxford Instruments Asylum Cypher S

Oxfords Highest Resolution Fast Scanning AFM. Cypher’s proprietary system-level mechanical design is inherently immune to normal environmental...


Bruker Dimension Icon

Incorporating the latest evolution of Bruker’s industry-leading tip-scanning AFM technology, the Icon’s temperature-compensating position sensors...


Oxford Instruments Asylum MFP-3D Origin

Designed for flexibility and expandability, witha wide range of available system, environmental and application options to enhance capabilities,...


Anasys afm+

The afm+ from Anasys is a full featured Atomic Force Microscope with powerful analytical capabilities that make it much more than just an imaging...



AFM for studies in the conditions of controlled environment, low vacuum, external magnetic fields.


Keysight 7500 ILM

High-resolution atomic force microscope on an inverted optical microscope allows simultaneous AFM and fluorescence imaging Top-down scanner design...


Ardic P300

The P300 AFM is a highly modular system that can adapt to your experimental needs. The scanner can be easily swapped, allowing the user to change...


AIST-NT OmegaScope 1000

The OmegaScope 1000 is a state-of-the-art turn-key solution that combines confocal NanoRaman/ Fluorescence spectroscopy and ultra resolution...


DME DS 95 AFM Objective for Optical Microscopes

The DS 95 AFM Objective in your optical microscope is the ticked for the world behind the defraction limit. The resolution is pushed far below...


Nanonics Multiview 1000

Entry-level system with easy upgrade: The Multiview 1000 system provides a cost-effective scanning probe microscopy solution complete with advanced...


Bruker BioScope Resolve

BioScope Resolve features the highest resolution atomic force microscopy imaging and most complete cell mechanics capabilities available for use with...


Park XE7

The economical choice for innovative research: Park XE7 has all the state-of-the-art technology you've come to expect from Park Systems, at a price...



Interdisciplinary research at the nanometer scale: AFM + Confocal Raman + SNOM + TERS: Integration of SPM and confocal microscopy/Raman scattering...


Nanosurf NaniteAFM

Mountable AFM for industry The unparalleled small footprint of the NaniteAFM scan head makes it the ideal atomic force microscope for integration...


Nanomagnetics Ambient AFM/MFM

Its affordable price and good performance makes the ambientAFM preferred atomic force microscope for both R&D studies and industry. It allows...


HORIBA Raman-AFM and nano-Raman

HORIBA's leading Raman technology is now integrated with outstanding scanning probe microscopy (SPM). The platform integrates Atomic Force Microscopy...


JPK NanoWizard 3 UltraSpeed AFM

Fast-Scanning and Super-Resolution AFM on inverted microscope enabling tracking of changes in samples in real time.


AFMWorkshop SA-AFM

The SA-AFM is a flexible AFM for scanning all sizes and shapes of samples. A complete system for life sciences samples, large samples, routine...


Hitachi AFM5300E Environmental Control Atomic Force Microscope

An environmentally-controlled atomic force microscope for observations under various conditions, the AFM5300E allows surface measurements in Air,...


Bruker Icon AFM-Raman

The Dimension Icon AFM-Raman system, consisting of the Icon AFM and a research-grade confocal Raman microscope (Horiba, LabRam, etc.), is on a...



NTEGRA Prima is a multifunctional device for performing the most typical tasks in the field of Scanning Probe Microscopy.


Page 1 of 4

Cherry Picker

Compare Instruments


ABOUT Science Duel Life

science.duel.life & mynexttool Is a Free-Access Scientific Instrument Database.

Accurate and truthful parameter filters for all instruments and manufacturers provide a positive experience to our users.


New York, NY

Berlin, Germany


Come back tomorrow for more.